

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 30 (2010) 2139–2143

www.elsevier.com/locate/jeurceramsoc

Technical note

$ZrO₂$ -doped $Y₂O₃$ transparent ceramics via slip casting and vacuum sintering

Lingling Jin, Guohong Zhou, Shunzo Shimai, Jian Zhang, Shiwei Wang ∗

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China Received 12 October 2009; received in revised form 3 March 2010; accepted 2 April 2010

Abstract

Commercial Y₂O₃ powder was used to fabricate highly transparent Y₂O₃ ceramics with the addition of ZrO₂ via slip casting and vacuum sintering. The effects of ZrO_2 addition on the transparency, grain size and lattice parameter of Y_2O_3 ceramics were studied. With addition of ZrO_2 the transparency of Y_2O_3 ceramics increased markedly and the grain size of Y_2O_3 ceramics decreased markedly by cation diffusivity mechanism and the lattice parameter of Y_2O_3 ceramics slightly decreased. The highest transmittance (at wavelength 1100 nm) of the 5.0 mol% ZrO₂– Y_2O_3 ceramic (1.0 mm thick) sintered at 1860 °C for 8 h reached 81.7%, very close to the theoretical value of Y_2O_3 . © 2010 Elsevier Ltd. All rights reserved.

Keywords: ZrO_2 ; Y_2O_3 ; Transparent ceramics; Slip casting; Optical properties

1. Introduction

 Y_2O_3 , as a promising optical material, has excellent physical and chemical properties such as high melting point $(2430 °C)$, broad range of transparency $(0.2-8 \,\mu\text{m})$, and high corrosion resistance. Y_2O_3 ceramics have been developed for laser host materials, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ [in](#page-3-0)fra[re](#page-3-0)d-domes, $\frac{2}{3}$ nozzles, $\frac{3}{2}$ refractories^{[4](#page-3-0)} and components of semiconductor devices.[5](#page-3-0)

Generally, it is not easy to produce transparent Y_2O_3 ceramics due to its high melting point. To decrease the sintering temperature and improve the transparency of Y_2O_3 ceramics, sintering aids and/or special sintering process such as hot pressing and hot isostatic pressing (HIP) were employed. For example, LiF, 6 6 6 Al₂O₃, 7 7 7 BeO, 8 8 8 HfO₂, 9 9 9 ThO₂^{[10](#page-3-0)} and La₂O₃^{[11](#page-3-0)} have been respectively added to remove pores for high optical quality of Y_2O_3 ceramics during the past 40 years. However, the formation of a transient second solid-phase or a liquid-phase by addition of La_2O_3 , LiF, Al_2O_3 or BeO is a disadvantage for optical applications. On the other hand, hot pressing is not suitable to prepare transparent Y_2O_3 ceramics with complex shape. Recently, Bernard-Granger et al. 12 fabricated transparent Y_2O_3 ceramics via HIP method with the addition of 300 ppm ZrO_2 . The transmittance of their sample reached 70%

0955-2219/\$ – see front matter © 2010 Elsevier Ltd. All rights reserved. doi[:10.1016/j.jeurceramsoc.2010.04.004](dx.doi.org/10.1016/j.jeurceramsoc.2010.04.004)

at 1100 nm. They focused on the investigation of grain growth and densification kinetics and did not discuss the effect of $ZrO₂$ concentration on the optical property of $Y₂O₃$ transparent ceramics.

Our aim is to develop a simple and cheap process to produce Y_2O_3 ceramics with high optical quality. ZrO_2 -doped Y₂O₃ transparent ceramics have been prepared using commercial Y_2O_3 powders via slip casting and vacuum sintering. The effects of $ZrO₂$ concentration and sintering temperature on the optical property and microstructure of Y_2O_3 transparent ceramics were evaluated.

2. Experimental procedure

Commercial Y_2O_3 powder (5N purity, Jiangyin Jiahua Advanced Material Resources Co., Ltd., China) consists of agglomerated platelet particles ([Fig. 1\(a](#page-1-0))) with a mean particle diameter of 2.0 μ m and a BET surface area of 3.44 m²/g. The Y_2O_3 powder, adding different concentrations of ZrO_2 sintering aid (3N purity, Shanghai Di Yang Chemical Ltd., China), was milled with $ZrO₂$ balls for 12 h in ethanol. Then the milled slurry was dried at 60 ◦C for 24 h. The so-obtained powders were calcined at $1000\degree$ C for 2 h. [Fig. 1\(b](#page-1-0)) shows the morphology of the calcined powder. Its mean particle diameter was $0.48 \,\mathrm{\upmu m}$ and BET surface area was $5.40 \,\mathrm{m}^2/\mathrm{g}$. It indicated that ballmilling effectively changed the morphology and particle size of the commercial powder.

[∗] Corresponding author. Tel.: +86 021 52414321; fax: +86 021 52415263.

E-mail addresses: lljin@mail.sic.ac.cn (L. Jin), swwang51@mail.sic.ac.cn (S. Wang).

Fig. 1. Scanning electron micrograph of received commercial Y_2O_3 powder before (a) and after (b) ball-milling.

Suspensions with $30 \text{ vol} \%$ Y₂O₃ solids were prepared by ball-milling the calcined powder, deionized water and dispersant. The detail of this process can be found in a previous report[.13](#page-4-0) The prepared suspensions were slip-casted into a gypsum mold. After demolding and drying, the green bodies were heat treated at 900 ℃ for 2h in order to burn out the organic additives.

The green bodies with a relative density of about 45% were sintered at 1730–1900 ℃ for 5–15 h under vacuum of 2×10^{-3} Pa in a furnace with tungsten heating element. The sintered samples were then annealed at $1500\degree$ C for 10 h in air. Finally, the obtained samples were ground and polished.

The optical transmittance was measured by a spectrophotometer (Model U-2800, Hitachi, Japan). Microstructure and grain size of the samples were observed by scanning electron microscopy (SEM, JXA-8100, JEOL, Japan). X-ray diffraction (XRD) was performed on the ZrO_2 -doped Y_2O_3 ceramics using a diffractometer (Model D/MAX-2550 V, Rigaku, Japan). Guinier-Hagg camera (XDC-1000, Stockholm, Sweden) was used to precisely characterize lattice parameters of the ceramics.

3. Results and discussion

Fig. 2 shows XRD patterns of the Y_2O_3 ceramics doped with different $ZrO₂$ concentrations sintered at 1860 °C for 8 h

Fig. 2. X-ray diffraction patterns of Y_2O_3 ceramics doped with different ZrO_2 concentrations sintered at 1860 ◦C for 8 h in vacuum atmosphere.

Table 1

The lattice parameter $(a=b=c)$ of Y₂O₃ doped with different ZrO₂ concentrations.

in vacuum. All the samples exhibit a pure cubic phase of Y_2O_3 structure without the presence of $ZrO₂$ phase or other impurities. It indicated that $ZrO₂$ was soluble in $Y₂O₃$ within the composition range of $0-9$ mol% $ZrO₂$. This result is in agreement with the phase diagram of $ZrO_2-Y_2O_3$ system presented by Duwez¹⁴. Though the stoichiometric composition of Y_2O_3 is not the same as that of ZrO_2 , they have the similar crystal structure. Y_2O_3 can be pictured as a modified fluorite-type cubic structure with one-fourth of the anion sites vacant and regularly arranged. In other words, it could be considered that the unit cell of Y_2O_3 is made up of eight cells of $ZrO₂$ in which the yttrium atoms replace zirconium atoms and only three-fourths of the oxygen positions are occupied. So it is easy to understand that $ZrO₂$ is soluble in Y_2O_3 over a wide range of concentrations.

From Table 1, it can be seen that with the increase of $ZrO₂$ concentration, lattice parameters of the sintered Y_2O_3 ceramics decreased slightly. This is due to that the radius of Zr^{4+} (0.79 Å) is smaller than that of Y^{3+} (0.89 Å).

Fig. 3 shows the pictures of Y_2O_3 transparent ceramics doped with different $ZrO₂$ concentrations sintered at 1860 °C for 8 h in vacuum atmosphere. All Y_2O_3 ceramics were 1 mm in thickness. It can be seen that the undoped Y_2O_3 ceramic was opaque. The optical quality of Y_2O_3 ceramic doped with 0.2 mol% ZrO₂ was

Fig. 3. Photographs of Y_2O_3 ceramics doped with different ZrO_2 concentrations.

a little better than that without $ZrO₂$. And the other three $Y₂O₃$ ceramics exhibited high optical transmittance.

Fig. 4 shows the in-line transmittance of 1 mm thick Y_2O_3 transparent ceramics doped with different $ZrO₂$ concentrations sintered at 1860 °C for 8 h in vacuum atmosphere. With the doping concentration of $ZrO₂$ increased from 0 mol% to 5 mol%, the transmittance of Y_2O_3 ceramics at 1100 nm was improved from 8.34% to 81.7%. The theoretical transmittance of Y_2O_3 is 81.93% at 1100 nm. It is worth to notice that the Y_2O_3 ceramics doped with $5 \text{ mol} \%$ ZrO₂ shows quite a good optical transmittance even at 400 nm.

Fig. 5 (a)–(e) shows fracture surfaces of ZrO_2 -doped Y_2O_3 transparent ceramics sintered at 1860 ◦C for 8 h in vacuum atmosphere. It can be seen that large pores were visible for Y_2O_3 ceramics doped with $0 \mod 6$ (Fig. 5 (a)) and $0.2 \mod 6$ (Fig. 5 (b)) $ZrO₂$. Due to the presence of pores, light scattering and absorption occurred in the two samples, which resulted in a lower transmittance. For the 5 mol% ZrO₂-doped sample, it was fully densified and it is hard to observe any pore in the sintered body. Therefore, it had a higher transparency (Fig. 4). The grain

Fig. 4. In-line transmittance of Y_2O_3 ceramics doped with different ZrO_2 concentrations sintered at 1860 ◦C for 8 h in vacuum atmosphere.

Fig. 5. Fracture surfaces of Y_2O_3 ceramics doped with (a) $0 \text{ mol}\%$, (b) $0.2 \text{ mol}\%$, (c) $2 \text{ mol}\%$, (d) $5 \text{ mol}\%$, and (e) $9 \text{ mol}\%$ ZrO₂.

Fig. 6. Relationship between $ZrO₂$ concentration and grain size of $Y₂O₃$ ceramics sintered at 1860 ◦C for 8 h in vacuum atmosphere.

sizes of Y_2O_3 ceramics doped with 0 mol%, 0.2 mol%, 2 mol%, 5 mol% and 9 mol% ZrO_2 were 150 μ m, 100 μ m, 8.8 μ m, 5 μ m, and 14.4 μ m, respectively (Fig. 6). According to Chen et al., ^{[15](#page-4-0)} Zr^{4+} was the most effective grain growth inhibitor in the sintering of Y_2O_3 . Grain boundary mobility of Y_2O_3 was controlled by cation diffusivity, and cation diffusion by an interstitial mechanism can be suppressed by the presence of oxygen interstitials (O_i'') . When ZrO_2 is soluble in Y_2O_3 , two tetravalent Zr^{4+} create one O_i'' and a large concentration of ZrO_2 may introduce more O_i'' . So ZrO_2 as a dopant inhibited Y^{3+} diffusivity which decreased grain boundary mobility of Y_2O_3 and led to the decrease of grain size. At much higher concentration $ZrO₂$ doping, such as 9 mol%, the grain boundary mobility was increased, resulting in a slight increase of grain size and embedded pores. Thus, the transmittance of the Y_2O_3 ceramics was decreased. Similar phenomena had been reported in Ti⁴⁺ doped Y_2O_3 ceramics.[14](#page-4-0)

Fig. 7 shows the effect of sintering temperature on the grain size and transmittance of $2 \text{ mol} \%$ ZrO₂-doped Y₂O₃ ceramics sintered at different temperatures for 8 h. With the sintering

Fig. 7. Effect of sintering temperature on grain size and transmittance of 2 mol% $ZrO₂$ -doped $Y₂O₃$ ceramics sintered at different temperatures for 8 h.

temperature increasing from 1840 \degree C to 1900 \degree C, the transmittance of 1.0 mm thick Y_2O_3 ceramics decreased and the grain size of Y_2O_3 ceramics increased. It indicated that a sintering temperature of 1840 °C was adequate to obtain Y_2O_3 transparent ceramics with a higher transparency and a smaller grain size.

4. Conclusions

Using commercial Y_2O_3 powders as the starting materials, highly transparent Y_2O_3 ceramics with the addition of $ZrO₂$ were fabricated by slip casting and vacuum sintering at 1730–1900 \degree C for 5–15 h. The important results are summarized as follows:

- (1) A simple and cheap method, slip casting and vacuum sintering has been successfully developed to prepare $ZrO₂$ -doped Y₂O₃ transparent ceramics.
- (2) Doping with 5 mol% ZrO_2 , Y_2O_3 ceramics was pore-free and the grain size was 5μ m. The transmittance was 81.7% which was very close to the theoretical value.
- (3) Due to the radius of Zr^{4+} smaller than that of Y^{3+} , lattice parameter of Y_2O_3 decreased with increasing the concentration of $ZrO₂$.

Acknowledgements

The authors would like to acknowledge China National 863 project under a contract of "2006AA03Z535" and Shanghai fundamental research under a contract of "07DJ14001".

References

- 1. Kong J, Tang DY, Zhao B, Lu J, Ueda K, Yagi H, Yanagitani T. 9.2- W diode-end-pumped Yb:Y2O3 ceramic laser. *Appl Phys Lett* 2005;**86**: 161116–8.
- 2. Harris DC. *Materials for infrared windows and domes.*. Washington, USA: SPIE-The International Society for Optical Engineering; 1999.
- 3. Micheli AL, Dungan DF, Mantese JV. High-density yttria for practical ceramic applications. *J Am Ceram Soc* 1992;**75**:709–11.
- 4. Lu J, Guo X, Shi ZZ, Yang H, Li GS. Large diameter Y_2O_3 -shield for the crystal growth of YAP. *J Synth Cryst* 1989;**18**:341–3.
- 5. Iwasawa J, Nishimizu R, Tokita M. Plasma-resistant dense yttrium oxide film prepared by aerosol deposition process. *J Am Ceram Soc* 2007;**90**:2327–32.
- 6. Lefever RA, Matsko J. Transparent yttrium oxide ceramics. *Mater Res Bull* 1967;**9**:865–9.
- 7. Rhodes, W. H., Reid F. J., Transparent yttria ceramics and method for producing same. US patent 4,166,831, 4 September 1979.
- 8. Toda G, Matsuyama I. Effect of BeO addition on sintering of transparent Y2O3. *J Jpn Soc Powder Powder Metall* 1988;**35**:486–91.
- 9. Ikesue A, Kamata K, Yoshida K. Synthesis of transparent Nd doped HfO2–Y2O3 ceramics using HIP. *J Am Ceram Soc* 1996;**79**:359–64.
- 10. Greskovich C, Woods KN. Fabrication of transparent ThO_2 -doped Y_2O_3 . *Ceram Bull* 1973;**52**:473–8.
- 11. Rhodes WH. Controlled transient solid second-phase sintering of yttria. *J Am Ceram Soc* 1981;**64**:13–9.
- 12. Bernard-Granger G, Guizard C, San-Miguel L. Sintering behavior and optical properties of yttria. *J Am Ceram Soc* 2007;**90**:2698–702.
- 13. Jin LL, Mao XJ, Wang SW, Dong MJ. Optimization of the rheological properties of yttria suspensions. *Ceram Int* 2009;**35**:925–7.
- 14. Duwez P, Brown FH, Odell F. The zirconia-yttria system. *J Electrochem Soc* 1951;**98**:356–62.
- 15. Chen P-L, Chen I-W. Grain boundary mobility in Y_2O_3 : defect mechanism and dopant effects. *J Am Ceram Soc* 1996;**79**:1801–9.