

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 30 (2010) 2139-2143

www.elsevier.com/locate/jeurceramsoc

Technical note

ZrO₂-doped Y₂O₃ transparent ceramics via slip casting and vacuum sintering

Lingling Jin, Guohong Zhou, Shunzo Shimai, Jian Zhang, Shiwei Wang*

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China Received 12 October 2009; received in revised form 3 March 2010; accepted 2 April 2010

Abstract

Commercial Y_2O_3 powder was used to fabricate highly transparent Y_2O_3 ceramics with the addition of ZrO_2 via slip casting and vacuum sintering. The effects of ZrO_2 addition on the transparency, grain size and lattice parameter of Y_2O_3 ceramics were studied. With addition of ZrO_2 the transparency of Y_2O_3 ceramics increased markedly and the grain size of Y_2O_3 ceramics decreased markedly by cation diffusivity mechanism and the lattice parameter of Y_2O_3 ceramics slightly decreased. The highest transmittance (at wavelength 1100 nm) of the 5.0 mol% $ZrO_2-Y_2O_3$ ceramic (1.0 mm thick) sintered at 1860 °C for 8 h reached 81.7%, very close to the theoretical value of Y_2O_3 . © 2010 Elsevier Ltd. All rights reserved.

Keywords: ZrO2; Y2O3; Transparent ceramics; Slip casting; Optical properties

1. Introduction

 Y_2O_3 , as a promising optical material, has excellent physical and chemical properties such as high melting point $(2430 \,^{\circ}\text{C})$, broad range of transparency (0.2-8 µm), and high corrosion resistance. Y₂O₃ ceramics have been developed for laser host materials,¹ infrared-domes,² nozzles,³ refractories⁴ and components of semiconductor devices.5

Generally, it is not easy to produce transparent Y2O3 ceramics due to its high melting point. To decrease the sintering temperature and improve the transparency of Y2O3 ceramics, sintering aids and/or special sintering process such as hot pressing and hot isostatic pressing (HIP) were employed. For example, LiF,⁶ Al₂O₃,⁷ BeO,⁸ HfO₂,⁹ ThO₂¹⁰ and La₂O₃¹¹ have been respectively added to remove pores for high optical quality of Y₂O₃ ceramics during the past 40 years. However, the formation of a transient second solid-phase or a liquid-phase by addition of La₂O₃, LiF, Al₂O₃ or BeO is a disadvantage for optical applications. On the other hand, hot pressing is not suitable to prepare transparent Y_2O_3 ceramics with complex shape. Recently, Bernard-Granger et al.¹² fabricated transparent Y₂O₃ ceramics via HIP method with the addition of 300 ppm ZrO₂. The transmittance of their sample reached 70%

at 1100 nm. They focused on the investigation of grain growth and densification kinetics and did not discuss the effect of ZrO_2 concentration on the optical property of Y_2O_3 transparent ceramics.

Our aim is to develop a simple and cheap process to produce Y₂O₃ ceramics with high optical quality. ZrO₂-doped Y₂O₃ transparent ceramics have been prepared using commercial Y₂O₃ powders via slip casting and vacuum sintering. The effects of ZrO₂ concentration and sintering temperature on the optical property and microstructure of Y2O3 transparent ceramics were evaluated.

2. Experimental procedure

Commercial Y₂O₃ powder (5N purity, Jiangyin Jiahua Advanced Material Resources Co., Ltd., China) consists of agglomerated platelet particles (Fig. 1(a)) with a mean particle diameter of 2.0 μ m and a BET surface area of 3.44 m²/g. The Y₂O₃ powder, adding different concentrations of ZrO₂ sintering aid (3N purity, Shanghai Di Yang Chemical Ltd., China), was milled with ZrO₂ balls for 12 h in ethanol. Then the milled slurry was dried at 60 °C for 24 h. The so-obtained powders were calcined at 1000 °C for 2 h. Fig. 1(b) shows the morphology of the calcined powder. Its mean particle diameter was 0.48 µm and BET surface area was 5.40 m²/g. It indicated that ballmilling effectively changed the morphology and particle size of the commercial powder.

Corresponding author. Tel.: +86 021 52414321; fax: +86 021 52415263.

E-mail addresses: lljin@mail.sic.ac.cn (L. Jin), swwang51@mail.sic.ac.cn (S. Wang).

^{0955-2219/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2010.04.004

Fig. 1. Scanning electron micrograph of received commercial Y2O3 powder before (a) and after (b) ball-milling.

Suspensions with $30 \text{ vol}\% \text{ Y}_2\text{O}_3$ solids were prepared by ball-milling the calcined powder, deionized water and dispersant. The detail of this process can be found in a previous report.¹³ The prepared suspensions were slip-casted into a gypsum mold. After demolding and drying, the green bodies were heat treated at 900 °C for 2 h in order to burn out the organic additives.

The green bodies with a relative density of about 45% were sintered at 1730–1900 °C for 5–15 h under vacuum of 2×10^{-3} Pa in a furnace with tungsten heating element. The sintered samples were then annealed at 1500 °C for 10 h in air. Finally, the obtained samples were ground and polished.

The optical transmittance was measured by a spectrophotometer (Model U-2800, Hitachi, Japan). Microstructure and grain size of the samples were observed by scanning electron microscopy (SEM, JXA-8100, JEOL, Japan). X-ray diffraction (XRD) was performed on the ZrO₂-doped Y₂O₃ ceramics using a diffractometer (Model D/MAX-2550 V, Rigaku, Japan). Guinier-Hagg camera (XDC-1000, Stockholm, Sweden) was used to precisely characterize lattice parameters of the ceramics.

3. Results and discussion

Fig. 2 shows XRD patterns of the Y_2O_3 ceramics doped with different ZrO₂ concentrations sintered at 1860 °C for 8 h

Fig. 2. X-ray diffraction patterns of Y_2O_3 ceramics doped with different ZrO_2 concentrations sintered at 1860 °C for 8 h in vacuum atmosphere.

Table 1	1
---------	---

The lattice parameter (a=b=c) of Y₂O₃ doped with different ZrO₂ concentrations.

ZrO ₂ concentrations (mol%)	<i>a</i> axis of Y_2O_3 (nm)
0.2	1.05994
2	1.05949
5	1.05948
9	1.05841

in vacuum. All the samples exhibit a pure cubic phase of Y_2O_3 structure without the presence of ZrO_2 phase or other impurities. It indicated that ZrO_2 was soluble in Y_2O_3 within the composition range of 0–9 mol% ZrO_2 . This result is in agreement with the phase diagram of $ZrO_2-Y_2O_3$ system presented by Duwez¹⁴. Though the stoichiometric composition of Y_2O_3 is not the same as that of ZrO_2 , they have the similar crystal structure. Y_2O_3 can be pictured as a modified fluorite-type cubic structure with one-fourth of the anion sites vacant and regularly arranged. In other words, it could be considered that the unit cell of Y_2O_3 is made up of eight cells of ZrO_2 in which the yttrium atoms replace zirconium atoms and only three-fourths of the oxygen positions are occupied. So it is easy to understand that ZrO_2 is soluble in Y_2O_3 over a wide range of concentrations.

From Table 1, it can be seen that with the increase of ZrO_2 concentration, lattice parameters of the sintered Y_2O_3 ceramics decreased slightly. This is due to that the radius of Zr^{4+} (0.79 Å) is smaller than that of Y^{3+} (0.89 Å).

Fig. 3 shows the pictures of Y_2O_3 transparent ceramics doped with different ZrO₂ concentrations sintered at 1860 °C for 8 h in vacuum atmosphere. All Y_2O_3 ceramics were 1 mm in thickness. It can be seen that the undoped Y_2O_3 ceramic was opaque. The optical quality of Y_2O_3 ceramic doped with 0.2 mol% ZrO₂ was

Fig. 3. Photographs of Y_2O_3 ceramics doped with different ZrO_2 concentrations.

a little better than that without ZrO_2 . And the other three Y_2O_3 ceramics exhibited high optical transmittance.

Fig. 4 shows the in-line transmittance of 1 mm thick Y_2O_3 transparent ceramics doped with different ZrO_2 concentrations sintered at 1860 °C for 8 h in vacuum atmosphere. With the doping concentration of ZrO_2 increased from 0 mol% to 5 mol%, the transmittance of Y_2O_3 ceramics at 1100 nm was improved from 8.34% to 81.7%. The theoretical transmittance of Y_2O_3 is 81.93% at 1100 nm. It is worth to notice that the Y_2O_3 ceramics doped with 5 mol% ZrO_2 shows quite a good optical transmittance even at 400 nm.

Fig. 5 (a)–(e) shows fracture surfaces of ZrO_2 -doped Y_2O_3 transparent ceramics sintered at 1860 °C for 8 h in vacuum atmosphere. It can be seen that large pores were visible for Y_2O_3 ceramics doped with 0 mol% (Fig. 5 (a)) and 0.2 mol% (Fig. 5 (b)) ZrO_2 . Due to the presence of pores, light scattering and absorption occurred in the two samples, which resulted in a lower transmittance. For the 5 mol% ZrO_2 -doped sample, it was fully densified and it is hard to observe any pore in the sintered body. Therefore, it had a higher transparency (Fig. 4). The grain

Fig. 4. In-line transmittance of Y_2O_3 ceramics doped with different ZrO_2 concentrations sintered at 1860 °C for 8 h in vacuum atmosphere.

Fig. 5. Fracture surfaces of Y_2O_3 ceramics doped with (a) 0 mol%, (b) 0.2 mol%, (c) 2 mol%, (d) 5 mol%, and (e) 9 mol% ZrO_2 .

Fig. 6. Relationship between ZrO_2 concentration and grain size of Y_2O_3 ceramics sintered at 1860 °C for 8 h in vacuum atmosphere.

sizes of Y_2O_3 ceramics doped with $0 \mod \%$, $0.2 \mod \%$, $2 \mod \%$, 5 mol% and 9 mol% ZrO₂ were $150 \mu \text{m}$, $100 \mu \text{m}$, $8.8 \mu \text{m}$, $5 \mu \text{m}$, and 14.4 μ m, respectively (Fig. 6). According to Chen et al.,¹⁵ Zr⁴⁺ was the most effective grain growth inhibitor in the sintering of Y₂O₃. Grain boundary mobility of Y₂O₃ was controlled by cation diffusivity, and cation diffusion by an interstitial mechanism can be suppressed by the presence of oxygen interstitials (O_i'') . When ZrO₂ is soluble in Y₂O₃, two tetravalent Zr⁴⁺ create one $O_i{}^{\prime\prime}$ and a large concentration of ZrO_2 may introduce more O_i'' . So ZrO₂ as a dopant inhibited Y^{3+} diffusivity which decreased grain boundary mobility of Y2O3 and led to the decrease of grain size. At much higher concentration ZrO₂ doping, such as 9 mol%, the grain boundary mobility was increased, resulting in a slight increase of grain size and embedded pores. Thus, the transmittance of the Y₂O₃ ceramics was decreased. Similar phenomena had been reported in Ti⁴⁺ doped Y₂O₃ ceramics.¹⁴

Fig. 7 shows the effect of sintering temperature on the grain size and transmittance of $2 \mod \% \operatorname{ZrO}_2$ -doped Y_2O_3 ceramics sintered at different temperatures for 8 h. With the sintering

Fig. 7. Effect of sintering temperature on grain size and transmittance of $2 \mod \%$ ZrO₂-doped Y₂O₃ ceramics sintered at different temperatures for 8 h.

temperature increasing from 1840 °C to 1900 °C, the transmittance of 1.0 mm thick Y_2O_3 ceramics decreased and the grain size of Y_2O_3 ceramics increased. It indicated that a sintering temperature of 1840 °C was adequate to obtain Y_2O_3 transparent ceramics with a higher transparency and a smaller grain size.

4. Conclusions

Using commercial Y_2O_3 powders as the starting materials, highly transparent Y_2O_3 ceramics with the addition of ZrO₂ were fabricated by slip casting and vacuum sintering at 1730–1900 °C for 5–15 h. The important results are summarized as follows:

- A simple and cheap method, slip casting and vacuum sintering has been successfully developed to prepare ZrO₂-doped Y₂O₃ transparent ceramics.
- (2) Doping with $5 \mod\% ZrO_2$, Y_2O_3 ceramics was pore-free and the grain size was $5 \mu m$. The transmittance was 81.7%which was very close to the theoretical value.
- (3) Due to the radius of Zr^{4+} smaller than that of Y^{3+} , lattice parameter of Y_2O_3 decreased with increasing the concentration of ZrO_2 .

Acknowledgements

The authors would like to acknowledge China National 863 project under a contract of "2006AA03Z535" and Shanghai fundamental research under a contract of "07DJ14001".

References

- Kong J, Tang DY, Zhao B, Lu J, Ueda K, Yagi H, Yanagitani T. 9.2-W diode-end-pumped Yb:Y₂O₃ ceramic laser. *Appl Phys Lett* 2005;86: 161116–8.
- Harris DC. Materials for infrared windows and domes.. Washington, USA: SPIE-The International Society for Optical Engineering; 1999.
- Micheli AL, Dungan DF, Mantese JV. High-density yttria for practical ceramic applications. J Am Ceram Soc 1992;75:709–11.
- 4. Lu J, Guo X, Shi ZZ, Yang H, Li GS. Large diameter Y₂O₃-shield for the crystal growth of YAP. *J Synth Cryst* 1989;**18**:341–3.
- Iwasawa J, Nishimizu R, Tokita M. Plasma-resistant dense yttrium oxide film prepared by aerosol deposition process. J Am Ceram Soc 2007;90:2327–32.
- Lefever RA, Matsko J. Transparent yttrium oxide ceramics. *Mater Res Bull* 1967;9:865–9.
- Rhodes, W. H., Reid F. J., Transparent yttria ceramics and method for producing same. US patent 4,166,831, 4 September 1979.
- Toda G, Matsuyama I. Effect of BeO addition on sintering of transparent Y₂O₃. J Jpn Soc Powder Powder Metall 1988;35:486–91.
- Ikesue A, Kamata K, Yoshida K. Synthesis of transparent Nd doped HfO₂-Y₂O₃ ceramics using HIP. J Am Ceram Soc 1996;**79**:359–64.
- Greskovich C, Woods KN. Fabrication of transparent ThO₂-doped Y₂O₃. Ceram Bull 1973;52:473–8.
- Rhodes WH. Controlled transient solid second-phase sintering of yttria. J Am Ceram Soc 1981;64:13–9.

- 12. Bernard-Granger G, Guizard C, San-Miguel L. Sintering behavior and optical properties of yttria. *J Am Ceram Soc* 2007;**90**:2698–702.
- Jin LL, Mao XJ, Wang SW, Dong MJ. Optimization of the rheological properties of yttria suspensions. *Ceram Int* 2009;35:925–7.
- Duwez P, Brown FH, Odell F. The zirconia-yttria system. J Electrochem Soc 1951;98:356–62.
- Chen P-L, Chen I-W. Grain boundary mobility in Y₂O₃: defect mechanism and dopant effects. J Am Ceram Soc 1996;79:1801–9.